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Abstract— Robust cross-seasonal localization is one of the
major challenges in long-term visual navigation of autonomous
vehicles. In this paper, we exploit recent advances in semantic
segmentation of images, i.e., where each pixel is assigned a
label related to the type of object it represents, to attack the
problem of long-term visual localization. We show that seman-
tically labeled 3D point maps of the environment, together
with semantically segmented images, can be efficiently used
for vehicle localization without the need for detailed feature
descriptors (SIFT, SURF, etc.). Thus, instead of depending
on hand-crafted feature descriptors, we rely on the training
of an image segmenter. The resulting map takes up much
less storage space compared to a traditional descriptor based
map. A particle filter based semantic localization solution is
compared to one based on SIFT-features, and even with large
seasonal variations over the year we perform on par with the
larger and more descriptive SIFT-features, and are able to
localize with an error below 1 m most of the time.

I. INTRODUCTION

Although autonomous vehicle navigation can be done in
uncharted environments, most efforts aiming at self-driving
vehicles usable for every day activities, such as commuting,
rely on pre-constructed maps to provide information about
the road ahead. A central task for the self-driving vehicle
is then to find its current location in these maps using
observations from its on-board sensors, such as camera, lidar,
radar etc. For this, in addition to navigational information, the
maps typically describe the position of landmarks, i.e., points
or structures in the environment, that can easily be detected
by the on-board sensors. When it comes to cameras, it is
common to use point features in the images as landmarks.
The associated map is then constructed from these point
features, where each feature is described by its 3D position
in the world and a condensed description of the visual
appearance of the local neighborhood around the feature.
In the localization phase, these descriptors are used to find
correspondences between point features in the current image
and the features in the map [1], [2]. A variety of methods
for establishing these 2D-3D correspondences have been
investigated, and once found, they can be used for calculating
the full six-degrees-of-freedom camera pose [3]–[5].

The visual information captured by a camera is well suited
for most tasks related to driving. If interpreted correctly,
it can be used, e.g., to detect other road users or drivable
road surface, and also for self-localization. However, the
abundance of information also provides several difficult
challenges. For example, the appearance of feature points
may change due to changes in light, weather, and seasonal
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Fig. 1. Example of how visual appearance changes with time for a scene
(top half), and that semantic segmentation of the same images (bottom half)
show less variation over time, although there are still large areas, especially
around the tree and on the sidewalk which are misclassified.

variations. The traditional point descriptors used, e.g., SIFT,
SURF, BRIEF, have been carefully designed to be robust
towards uniform intensity changes and slight variation of
viewpoint, but most were not designed to be invariant against
large changes in lighting (day/night) or the fact that a tree
looks completely different in summer compared to in winter.
Additionally, it has been shown that the most commonly used
feature detectors are very sensitive to changes in lighting
conditions [6], implying that even if the feature descriptor is
robust to these environmental changes, the resulting feature
matches would still be incorrect since the detector does
not trigger at the same points during localization as during
mapping. Thus, when mapping and localization occur in suf-
ficiently dissimilar conditions, it is very difficult to reliably
match features between the image and the map, resulting in
poor positioning accuracy or even complete failure of the
localization algorithm. This long-term localization problem
typically gets harder as the map gets older [7], and is one of
the major challenges in long-term autonomy.

The problem can be boiled down to finding a description
of the environment that is both usable for localization,
invariant over time, and compact. If this can not be achieved,
one has to cope with changing conditions by continuously
updating the map [7]–[9]. An attempt at having more robust
feature points and descriptors is presented in [10], where
they, instead of using handcrafted feature descriptors, train
neural networks to produce more robust feature descriptors.
Although they show promising results compared to SIFT they
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Fig. 2. Coordinate frames used are ”world” in local ENU (w), vehicle
(v), and camera (c). The origin of the vehicle frame is taken to be the
mid point between the cameras, which gives us a horizontal lever arm,
perpendicular to the direction of travel, to each camera. Also, the visibility
wedge (γai , γ

b
i , ri) of a map point, Ui, is illustrated.

are not designed to handle the type of variations described
above.

In this paper we propose to use recent advances in seman-
tic segmentation of images [11], and design a localization
algorithm based on these semantically segmented images and
a semantic point feature map, where, instead of using the
traditional descriptors to describe our features, each point
is only described by its 3-D position and the semantic
class of the object on which it resides, similar to ideas
presented in [12]. By semantic class, we mean a classification
into a few classes that are meaningful for a human, e.g.
”road”, ”building”, ”vegetation”, etc. The seasonal invariance
is thus off-loaded from the feature descriptors to the semantic
segmentation algorithm. The aim is to show that localization
works well when the semantic classification is reasonably
correct despite the more space efficient representation of the
environment. The positioning performance of the proposed
algorithm is compared to a localization algorithm based on
a traditional SIFT point feature map, using data collected
throughout a year.

II. PROBLEM STATEMENT

This paper concerns the problem of sequentially finding
the current position of a vehicle in a point feature map using
on-board cameras. The dataset considered here comes from
Carnegie Mellon University [13], and contains video, GPS
measurements, and a ”vehicle state” information which can
be thought of as a rough truth signal or integrated odometry.
In this section we present the available observations in more
detail and introduce notation for the map. We conclude by
defining the problem at hand mathematically.

A. Observations

The observations are taken with irregular, but known time
intervals. We denote the time instance for which one such
measurement was taken as t. Below follows a description of
the information coming from the sensors at one of these
time instances. Relevant coordinate frames and mounting
positions are depicted in Fig. 2.

1) Odometry: From the vehicle state data it is possible to
extract a 3-D velocity and 3-D rotational velocity, denoted
vt = [vxt , v

y
t , v

z
t ]T and ωt = [ωzt , ω

y
t , ω

x
t ]T , respectively.

The velocities are given relative the vehicle frame, and
the superscripts indicate along or around which axis the
component acts. All measurements are assumed to be af-
fected by additive Gaussian noise, and the rotational velocity
measurements are also affected by a slowly varying bias.

2) Images: The vehicle is equipped with a pair of cal-
ibrated cameras, mounted as indicated in Fig. 2. At a
frequency of about 15 Hz each camera takes an RGB image
with resolution 1024×768. Although it is possible to use this
raw image data directly [14], it is somewhat complicated.
A more common approach is to condense the image into a
set of feature points with associated descriptor vector, and
view this as the measurement. As such, the image is pre-
processed to produce a set of nt feature points and descriptor
pairs, ft = {〈uit,dit〉}

nt
i=1, where uit is a normalized image

coordinate and dit the associated descriptor vector.
In this paper, ft will have different properties depending on

which map we are using. In our proposed method (semantic
point feature map) ft will be dense and contain an element
for each pixel in the image, see Fig. 1. In the case of a
SIFT based map on the other hand, ft is sparse and contains
only the pixels for which the SIFT-algorithm has generated
a detection and their associated SIFT-descriptors (a 128x1
vector).

B. Maps

We assume that we have a pre-constructed point feature
map consisting of M point features. Let us denote the map
M = {〈Ui, Di, Vi〉}Mi=1. Each point feature is described
by its global position Ui = [Uei , U

n
i , U

u
i ]T (east, north and

up, respectively), its associated descriptor vector, Di and
visibility Vi = [ρi, γ

a
i , γ

b
i , ri]

T . The visibility of a feature
point is parameterized by a probability of detection ρi and a
visibility volume defined by γai , γ

b
i , and ri. The ith point is

modeled to have a detection probability of ρi in the wedge
shaped volume defined by the two angles γai , and γbi , in the
horizontal plane, out to a range, ri, from the point, and 0
elsewhere, see Fig. 2.

C. Problem definition

The problem at hand is to recursively calculate the poste-
rior density of the pose of the host vehicle relative to a map,
M, given all observations. That is, assuming that the pose
of the host vehicle at time t is described by the state xt,
we want to sequentially calculate the density p(xt|f1:t,M).
Further, in this paper we assume that the vehicle state is
given as xt = [et, nt, ut, γt, βt, αt]

T , where (et, nt, ut) is
the position in the global coordinate frame and (γt, βt, αt)
are the yaw, pitch and roll angles, respectively, of the vehicle
in the same coordinate frame.

III. MODELS

For a filtering solution to the problem defined above, we
need both a process model, describing how the state evolves
over time, and measurement models that describe the relation
between the state and our observations.



A. Process model

We model the vehicle using a simple point mass model.
The process model consist of two parts. One part (1) models
the motion by simply using the speed measurements as input,

M(xt) = ∆tM(xt−1) (1)

∆ =

[
e[∆tωt+qωt ]× ∆tvt + qvt

0 1

]
(2)

where M(·) ∈ SE(3) is the 4x4 matrix representation of a
pose, [a]× is the 3×3 matrix such that [a]×b = a × b for
all b, ∆t is the time between the samples enumerated by
t − 1 and t, and the motion noise qωt ∼ N (0,∆tQω), and
qvt ∼ N (0,∆tQv).

The other part of the process model is a term that ensures
that there is always a little density left on the road. This
would enable a lost filter to reacquire its lateral position even
if it is lost. The road is defined by the route that the mapping
vehicle drove, which is stored along with the 3-D landmarks
in the map. By projection onto this trajectory, a small fraction
of the density is moved to fall on the road. The complete
process model can be described as a mixture,

p(xt|xt−1) = (1− α)pm(xt|xt−1) + αpr(xt|xt−1), (3)

where pm(·) is given by (1) and pr(·) is the projection of
pm(·) onto the road.

B. Measurement model

We will present a measurement likelihood given the set
of feature points in the current image ft, for both types of
maps used in this paper, semantic and SIFT.

To arrive at a concise description of the likelihood we here
assume that we know the correspondence between the points
in the map and the points in the current image. As such, we
have a data association vector λt = [λ1

t , . . . , λ
nt
t ]T , where

λit = j indicates that image feature i corresponds to map
feature j if j > 0, otherwise the feature is not present in the
map. Using this data association and assuming conditional
independence between the pairs of uit and dit, we get an
expression for the likelihood as

p(ft|λt,xt,M) = p({〈uit,dit〉}
nt
i=1|λt,xt,M)

=
∏
i

p(uit,d
i
t|λt,xt,M)

=
∏
i

p(uit,d
i
t|xt,Mλit

). (4)

whereMλit
denotes the 3-D point with associated descriptor

and visibility parameters in the mapM which corresponds to
feature i according to the data association λt. So to be able to
express (4), we need to define the model p(uit,d

i
t|xt,Mλit

)
for our two types of maps. How we handle the fact that λt
is not available from the measurements, is given in Section
IV.

1) SIFT map: We start with a brief description of tradi-
tional localization in a point map with SIFT descriptors. With
a given data association, the descriptor part of the feature will
not contribute to the likelihood. We assume that the location
of the SIFT detection in the image is subject to some noise,
and a popular model for this is that the projection error of
the 3-D points is zero mean and normally distributed,

p(uit,d
i
t|xt,Mλit

) ∝ p(uit|xt,Uλit
)

= N (uit;π(xt,Uλit
), σ2

π), (5)

where π(·) is a standard pinhole camera projection model
with lens distortion [15], and σ2

π is the variance of the
detector error. Both the mounting of the camera relative
the vehicle coordinate frame and its intrinsic parameters are
implicit in the π(·) function.

2) Semantic map: In the case of the semantic maps, both
the descriptor of each map point, Dj , and image feature
descriptor dit is a scalar class label from the Cityscapes
classes [11], i.e., Dj ∈ {Building,Road, . . . }. Further, as
the semantic segmentation gives a class label for each pixel
in the image, ft is dense in the sense that it contains all the
pixels in the image.

Even though the descriptor for nearby pixels in the image
clearly are correlated from the neural net classifier, we again
make the simplifying assumption that the pixel class and
pixel coordinates are independent and can thus partition the
likelihood for a single feature point as

p(uit, d
i
t|xt,Mλit

)

= p(uit|xt,Uλit
)Pr
{
dit|xt,Mλit

}
. (6)

This factorization would lead to overconfidence in the obser-
vations, and the it would get worse, the more measurements
there are. This motivates the scale, s, and measurement
cutoff, Nc, introduced in Section IV-B. The first factor,
p(uit|xt,Uλit

), denotes the probability of detecting a feature
in pixel i. However, since all pixels in the input image are
classified by the segmenter, and all pixels are used in the
semantic model, pixel i will always detect a feature and
hence p(uit|xt,Uλit

) is constant for all i. We thus obtain

p(uit, d
i
t|xt,Mλit

) ∝ Pr
{
dit|xt,Mλit

}
. (7)

Turning to the expression in the right hand side of (7), we
have two cases: either there is no map point projected to this
pixel, λit = 0, or there is one, λit > 0. In the first case, we
have no information from the map about its class, and we
assume a distribution for all such pixels which is simply the
marginal distribution over all classes,

Pr
{
dit|λit = 0,xt,Mλit

}
= Pr

{
dit
}
. (8)

In the second case, the pixel coordinates corresponds to
a point in the map but we are still uncertain if we detect
the point or if it is occluded by something, e.g., a vehicle
or pedestrian. To handle this uncertainty we introduce a
detection variable δ which is 1 if the map point is detected in
the image and 0 otherwise. Using this detection variable we



initialize x̂0

for each time instance t do
acquire image yt
motion update (1)
extract SIFT points (ut,dt) from yt
pt = projection of x̂t onto map trajectory
select local map Mt from M using V and pt
match nearest neighbor dt to Mt

RANSAC on ut and U from Mt to find λt
if more than 7 inliers then

measurement update (5)
end

end
Algorithm 1: SIFT based localization

can express the likelihood for the pixels with corresponding
map points as

Pr
{
dit|xt,Mλit

}
=

=
∑

δ∈{0,1}

Pr
{
dit
∣∣δ,Di

λ

}
Pr
{
δ
∣∣xt,Mλit

}
, (9)

where Pr
{
dit
∣∣δ = 0, Dλik

}
and Pr

{
dit
∣∣δ = 1, Dλik

}
are de-

sign PMF:s for the pixel class probability given that specific
map point is occluded or visible, respectively. These are
sensor specific models that also depend on the properties
of the semantic segmentation algorithm used, and in section
V-A we will discuss more how these are determined. The
remaining model describes the probability that a given map
point is visible and can be structured as

Pr
{
δ = 1

∣∣xt,Uλik
,Vλik

}
= v(xt,Uλik

,Vλik)ρλik(1− Po),
(10)

where v(·) is a function that is one if xt is in the visibility
wedge of the map point and Po is a design parameter spec-
ifying the probability that a visible map point is occluded.
The probability for δ = 0 is found as the reciprocal of (10).

To conclude, the likelihood is factored into one part for
the pixel coordinates uik and one for the descriptor dik. The
first of the two factors is 1 for all pixels, and the second
factor contributes to the product over all features in (4) in
two ways depending on whether or not there is a map point
projected in the i:th pixel, according to

p(ft|λt,xt,M) =
∏
i

p(uit,d
i
t|xt,Mλit

)

=
∏

i∈{i:λit>0}

p(dit|xt,Mλit
)
∏

i∈{i:λit=0}

Pr
{
dit
}
. (11)

IV. ALGORITHMIC DETAILS

A. SIFT filter

Now we have tractable models for both the motion and
the two different classes of measurements based on SIFT de-
scriptors and the semantic class descriptor. The measurement
models are conditioned on a specific data association, and in
the semantic class case, the model provides a simple way

initialize particles x0 and weights w0

for each time instance t do
acquire image yt
motion update (1)
project fraction of particles onto map trajectory
assign class dit to each pixel of yt
select local map Mt from M using V and xt
measurement update (13)
normalize weights wt, and resample if needed

end
Algorithm 2: Sematic class based localization

to make the correct data association, but for SIFT descriptor
case we will describe the process further.

Our reference localization algorithm is similar to [7], but
instead of an iterative optimization we have implemented
an Unscented Kalman Filter (UKF), and instead of iterative
reweighting, we use RANSAC to select inliers from the
proposal correspondences. The UKF makes use of the motion
model (1) and measurement model for SIFT features (5), and
is described in pseudo code in Algorithm 1. The ”on road”-
part of the process model (3), is in this case approximated by
also including map points that are visible from the nearest
point of the road, instead of only from the current estimate.

Before the SIFT detections can be used in (5), we must
know the data associations, λt. Recall that λt represents
how point features are matched between the observed image
and the map M. We select one λt by first selecting a
subset of possibly visible points, Mt, from the full map,
M, based on the current pose estimate and the visibility
of the map points V . Then the observed SIFT descriptors
are matched in the image to their nearest neighbors (L2-
distance in the descriptor space) in this local map,Mt, using
Lowe’s ratio criterion [16] to select candidate matches. Then,
to further cull false correspondences we employ a 3-point
RANSAC approach in which three correspondence pairs
are selected, and the four camera views that are consistent
with these correspondences are calculated. Finally, we select
the configuration giving the most inliers according to the
reprojection error being less than a certain threshold, in our
case 6 pixels.

B. Semantic filter

For the localization using semantic data, we have chosen
a bootstrap particle filter [17] to recursively estimate the
posterior distribution as a sum of weighted Dirac delta
functions.

To be able to evaluate the likelihood for a particle, we first
need to determine which points in the map are potentially
visible. This is similar to what is done for the SIFT case,
and only needs to be done approximately and can thus
be calculated for several nearby particles simultaneously,
e.g. using their mean position together with the visibility
parameters, V , from the map. The potentially visible points
are then projected to the image plane, creating a unique
assignment, λt, from map to pixels for each particle. An



illustration of map points projected into the segmented image
is provided in Fig. 3.

Dividing (11) by the constant
∏
i Pr
{
dit
}

will simplify the
weight update since we then only have to consider the pixels
with a point projected into them,

p(ft|λt,xt,M) ∝
∏
i∈{i:λit>0} p(d

i
t|xt,Mλit

)∏
i∈{i:λit>0} Pr

{
dit
} . (12)

Because we chose to model the measurements as condi-
tionally independent when they are in fact not, the update we
would get from this would be overly confident in the mea-
surement, and to reduce this effect we raise the measurement
likelihood to a positive number smaller than 1, so that the
weight update for particle j becomes

w
(j)
t ← w

(j)
t−1 × p(ft|λt,x

(j)
t ,M)s/max{nλt ,Nc} (13)

where w
(j)
t is the weight associated with the j:th particle

with state x
(j)
t , s is a scaling parameter set to 3, nλt is the

number of map points that are projected in the image, and
Nc = 400 is a cutoff where more projected map points in
the image do not contribute with more information, with the
rationale that more points means their spacing in the image is
smaller and thus their corresponding measurements are more
correlated to each other.

The top level algorithm is summarized in pseudo code in
Algorithm 2.

V. EVALUATION

The localization framework is evaluated on the Carnegie
Mellon University (CMU) visual localization dataset [13],
[18], where a test vehicle equipped with two cameras tra-
versed a route of approximately nine kilometers in Pittsburgh
sixteen times throughout the period September 1, 2010 -

Fig. 3. Cropped area from a segmented image with map points projected
into it using the mean pose provided by the semantic localization filter.
Mapping and localization are in this case separated in time by only 2 weeks.
Black dots are map points which are classified mainly as building, green
represents vegetation, and yellow is from the pole class.

0 200 400 600 800 1000 1200

SIFT

Semantic Class

bits

3D coordinate Visibility cone Descriptor

Fig. 4. Storage space required for each point in the map. 3-D point
and visibility cone are needed regardless of descriptor. The descriptors are
quantized to 8 bit resolution. The semantic class descriptor could be even
more compactly represented, since points rarely lie in corners where 3 or
more classes meet, and can then be represented using only 1 or 2 bytes

September 2, 2011. The route consists of a mix of urban
and suburban areas, as well as green parks where mostly
vegetation is visible in the cameras. We have used 12 of these
16 sequences in our evaluation. The selected runs capture the
changes of the environment throughout the seasons, as well
as a variety of weather and lighting conditions. The SIFT-
features were extracted using VLFeat [19], and the semantic
segmentation was done using Dilation 10 [20].

A. Map creation

For camera localization to work, we need a map to localize
in. The focus of this paper is on the localization models,
but we will give a small note on how we have chosen to
handle the map, since there is no map included in the dataset.
We have picked the first sequence of measurements from
1 September 2010 and created a map from that sequence
of images. The remaining sequences are not used in the
map creation, but only used to evaluate localization with
respect to this map from Sep. 1. We used a structure-
from-motion pipeline based on [21], with the GPS and
odometry constraints used to create an initial trajectory,
after which a bundle adjustment procedure gave the final
solution to landmarks and poses. Images at standstill and
very low speeds were culled in order to avoid unnecessary
computations. Because of limited computer resources, the
whole sequence was split into smaller parts that were mapped
separately. More on map creation and data processing for
ground truth can be found in [22].

After calculating the 3-D points and camera poses, the
descriptors for each point are determined. For the SIFT map,
the arithmetic mean of the descriptors corresponding to each
view of the 3-D point is taken as the descriptor of the 3-
D point. For the semantic map, a small neighborhood of
7×7 pixels around the detected point in each image is taken
and then a normalized histogram over the classes of those
pixels is used as the PMF Pr

{
dit
∣∣δ = 1, Dλik

}
directly. The

marginal PMF from (8) is also calculated from data, as the
normalized histogram for all pixels in all images in the map-
ping sequence. The last design PMF, Pr

{
dit
∣∣δ = 0, Dλik

}
,

is a manual adjustment of the marginal PMF. The dynamic
objects, such as cars and pedestrians get increased probability
while the stationary objects get decreased. We can see in
fig. 4 that the size of SIFT descriptors is more than 6 times
larger than even the most naive way of storing the semantic
class descriptor. We have observed that normally each point



Fig. 5. One part of the map, as viewed in Google Maps 3-D view (top), and
the point cloud result of the structure from motion solution (bottom) colored
by most likely category where blue is ”construction”, green is ”nature”,
black is ”flat” and red is ”stationary object”.

only has probability mass in three or fewer classes, so if
we encode only the top three most probable classes for each
point, the descriptor size can be reduced to 39 bits. In fig. 5,
we show an example of the resulting point cloud from the
map creation with semantic categories indicated by color.

B. Ground truth

The dataset provides some form of ground truth data in
what is called ”vehicle state”, which includes pose, but it is
not accurate enough to evaluate this type of localization. In
order to obtain a more reliable ground truth, the sequences
were aligned by adding manual correspondences between
sequences and optimizing poses using the same structure
from motion pipeline as in the map creation [21], [22]. The
odometry measurements were generated from the relative
motion between the ground truth poses, and then adding
noise and bias. The added angular velocity bias was gener-
ated as bωt = (1− γ)bωt−1 + qb where qb ∼ N (0, 9 · 10−10)
and γ = 10−5. Additional Gaussian noise with variance of
2.5 · 10−5 was also added to the angular velocity, and noise
with variance 4 · 10−4 added to the velocity vector.

VI. RESULTS

Overall semantic localization performed on par with the
reference in our evaluation. Fig. 6 shows the fraction of
samples for which the localization error is within 0.5m, 1m,
and 2m, for each of the 11 localization trials.

When looking into a sample of cases where the local-
ization error is large, we find two reasons for the semantic
localization to fail. One is that the semantic class of the
3D points do not match the class in the image used for
localization, because either or both are wrongly classified.
E.g., the terrain beside the road is often misclassified as
road or vegetation (see Fig. 7), and this seems to happen
more frequently when the ground is covered in snow, as in
the December sequence.
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Fig. 6. Histograms of the distance error of the three different environment
types that the route was split in. Each histogram shows error distribution for
the eleven runs and for both the semantic class based localization and SIFT
based localization. Taller bars means that more samples were successfully
localized within that limit, and are thus better.

Another reason for the semantic localization to fail, is the
geometric configuration of certain scenes. On some roads
which on the side have a monotonous class, e.g. a high wall,
or a tall forest, the segmented images will look very similar
regardless of where along the road the image is taken. In such
scenes, the algorithm will give a higher likelihood score to
a position where more points from the map happen to be
visible. This could e.g. happen if there is a wall which has
a lot of texture in one place, and which is almost uniform
elsewhere. Then the localization filter adjusts the position
such that the high texture place is visible for a longer time.

The SIFT localization typically fails when it is not able to
find enough correspondences between the image and the map
that survive the RANSAC step, and then the dead reckoning
error accumulates. This was seen mostly in the ”Park” area
where virtually everything in the image is vegetation which
drastically changes appearance over time.

VII. DISCUSSION

The results are promising in the sense that we can perform
localization with results comparable to the reference algo-
rithm, despite using much less informative point descriptors
in the map. The results seem to not strongly support the
goal of increased long term robustness, but from the first
typical failure cases we have observed, we believe that results
would improve if the segmentation algorithms were trained
on data obtained during a larger range of environmental



Fig. 7. Image and its segmentation for the place where semantic localization
fails. Localization image to the left and mapping image to the right.

conditions (for example during winter, in more extreme
lighting conditions and so on). The second problem of
geometrically ambiguous configurations could possibly be
helped by using other classes, e.g., adding road markings,
splitting the vegetation class into trunk and foliage, etc.
Without making these adjustments to the segmentation al-
gorithm, the problematic scenarios that we set out to solve,
are improved but not quite solved. Looking into adjusting
the segmentation algorithm, and also investigating how to
combine semantic localization with traditional feature point
localization, would be interesting work in the future.
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