Have a Question?

舒尔补 | Schur’s complement

You are here:

1 定义

给定任意的矩阵块 \(\mathbf{M}\),其分块定义如下:
\(\mathbf{M}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\tag{1}\)

  • 如果矩阵块 \(\mathbf{D}\) 是可逆的,则 \(\Delta_{\mathbf{D}}\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\) 称之为 \(\mathbf{D}\) 关于 \(\mathbf{M}\) 的舒尔补。
  • 如果矩阵块 \(\mathbf{A}\) 是可逆的,则 \(\Delta_{\mathbf{A}}=\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\) 称之为 \(\mathbf{A}\) 关于 \(\mathbf{M}\) 的舒尔补。

舒尔补的来源是高斯消元法分块求解线性方程。

2 舒尔补应用

2.1 矩阵三角化、对角化

在矩阵上下三角化时,结果矩阵包含舒尔补,例如:
\(\begin{aligned}
&{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \Delta_{\mathbf{A}}
\end{array}\right]} \\
&{\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & 0 \\
\mathbf{C} & \Delta_{\mathbf{A}}
\end{array}\right]}
\end{aligned}\tag{2}\)

二者联合起来可以将矩阵 \(\mathbf{M}\) 变为对角形:
\(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \Delta_{\mathrm{A}}
\end{array}\right]\tag{3}\)

从对角形恢复成 \(\mathbf{M}\) 操作如下:
\(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \Delta_{\mathbf{A}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\tag{4}\)

2.2 矩阵求逆

通过上述公式:
\(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \Delta_{\mathbf{A}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A}^{-\mathbf{1}} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\tag{5}\)

可以将矩阵进行分块求逆:
\(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
\mathbf{0} & \Delta_{\mathbf{A}}^{-1}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\tag{6}\)

这里利用了:
\(\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]=\mathbf{I}\tag{7}\)

以及:
\(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{C A}^{-1} & \mathbf{I}
\end{array}\right]=\mathbf{I}\tag{8}\)

2.3 求解线性方程

设 \(\mathbf{x}\) 和 \(\mathbf{y}\) 对于如下线性方程组:
\(\begin{aligned}
&\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{y}=\mathbf{a} \\
&\mathbf{C} \mathbf{x}+\mathbf{D} \mathbf{y}=\mathbf{b}
\end{aligned}\tag{9}\)

采用矩阵形式表示:
\(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a} \\
\mathbf{b}
\end{array}\right]\tag{10}\)

这样这个线性方程就可以利用舒尔补求解:
\(\left(\mathbf{A}-\mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right) \mathbf{x}=\mathbf{a}-\mathbf{B} \mathbf{D}^{-1} \mathbf{b}\tag{11}\)

2.4 协方差

假设有分别属于 \(R_n\) 以及 \(R_m\) 的随机列向量 \(X\), \(Y\) ,并且 \(R_{n+m}\) 中的向量对 (\(X\), \(Y\))具有多维正态分布,其方差矩阵是对称的正定矩阵:

\(V=\left[\begin{matrix} A & B \\ B^T & C \end{matrix}\right].\tag{12}\)

那么 \(X\) 在 \(Y\) 给定时的条件方差是矩阵 \(C\) 在 \(V\) 中的舒尔补:

\(\operatorname{var}(X\mid Y) = A-BC^{-1}B^T.\tag{13}\)

参考文献

[1] 《从零开始手写VIO》
[2] https://zh.wikipedia.org/wiki/%E8%88%92%E5%B0%94%E8%A1%A5

Add a Comment

您的电子邮箱地址不会被公开。 必填项已用*标注

Table of Contents