分类: 3D

几何深度学习(Geometry Deep Learning)相关工作汇总

深度学习喜欢 End-to-End 解决问题,中间过程有比较多的黑盒,在很多很难完整描述出数学模型的识别类任务中表现尤为出色。但是在传统的几何里面,很多工作是有比较好的数学基础的(比如摄影几何、李群与李代数、BA等等),如果抛弃这些理论全盘黑盒方式解决,有时未必有很好的效果。 因此对于 Geometry Deep Learning (几何深度学习)方向来说,如果深度学习的方式能够改进传统的几何方法的某些环节,或者利用深度学习强大的特征学习能力再与几何方式结合,或许会是一个可行的方向。 最近几年这类的工作非常之多,各大顶会也都有类似的专题,这篇博客旨在收集一些相关的内容作为备忘(个人没有太多精力收集,欢迎大家留言推荐相关文章)。 1 相关论文 1.1 传统几何算法的改进 传统几何算法使用深度学习改进其中一个方向就是所谓 ”可微分“ (Differentiable),例如 ICP、RANSAC、Bundle Adjustment 等等算法有很多所谓 ”硬决策“ 部分(Hard Decision)。这方面很多大牛做了不少工作例如 Eric Brachmann 的 DSAC 系列等等。 下面是一些收集的相关论文: 2 相关代码 2.1 3D Deep...

论文笔记:Deep Closest Point: Learning Representations for Point Cloud Registration

DCP 是一篇基于 Deep Learning 来解决 ICP 问题的,其中 Deep Learning 部分主要用于做匹配,后端仍然沿用 SVD 的方法。比很多 MLP 直接出 Pose 的合理,也取得了更好的效果。在与传统方法例如 Go-ICP 以及深度学习方法 PointNetLK 的对比中,都取得了一定的优势。 1 经典 ICP 问题 这一部分在之前的论文笔记中已经有了比较详细的阐述,参见:使用 SVD 方法求解...

论文笔记:Dynamic Graph CNN for Learning on Point Clouds

DGCNN 是对 PointNet 的改进,PointNet 网络每个点单独提取特征缺乏局部关联。DGCNN 提出了 EdgeConv 就是对它的改进。 1 网络结构 DGCNN 网络结构如下图所示,可以看出其整体架构和 PointNet 是基本一致的,主要区别就是将其中的 MLP 替换成了 EdgeConv。 2 EdgeConv 2.1 EdgeConv 结构 上图是 EdgeConv 的示意图。假设一个F维点云 其中 F 表示每个点的维度,最简单的可能是 x,...